COMBAT: A study of ⁶⁴Cu-SAR-BBN and ⁶⁷Cu-SAR-BBN for identification and treatment of GRPr-expressing metastatic castrate-resistant prostate cancer

Luke T. Nordquist¹, Eva Lengyelova², Frankis Almaguel³, Brandon R. Mancini⁴, Hong Song⁵, Andrew J. Armstrong⁶, Amado J. Zurita⁷, Monique Anderson², Michelle Parker², Robert M. Miller², Andrei lagaru⁵

¹XCancer, Omaha, NE; ²Clarity Pharmaceuticals, Sydney, Australia; ³Biogenix Molecular/LLUH, Miami, FL; ⁴BAMF Health, Grand Rapids, MI; ⁵Stanford University, Stanford, CA; ⁶Duke University, Durham, NC; ⁷University of Texas MD Anderson Cancer Center, Houston, TX

BACKGROUND

Metastatic castrate-resistant prostate cancer (mCRPC) is an advanced and lethal form of prostate cancer (PC). Prostate-specific membrane antigen (PSMA)-targeted theranostic agents, ⁶⁸Ga-PSMA-11 and ¹⁷⁷Lu-PSMA-617, have been approved by the Food and Drug Administration (FDA) for patient selection and therapy of patients with mCRPC, respectively.

Tumor expression of PSMA is not present or is low in up to 10% of primary PC, in 25% of men with castration-resistant PC, and in approximately 20-25% of men in biochemical recurrence of PC1-4. Consequently, these patients are unlikely to benefit from PSMA-targeted agents and represent a significant unmet need for both imaging and therapy.

The Gastrin Releasing Peptide receptor (GRPr) is a transmembrane Gprotein coupled receptor that has various physiological functions in the gastrointestinal tract and nervous system⁵. It is also upregulated in many human cancers, including PC⁶⁻⁹.

A promising new theranostic pair, consisting of ⁶⁴Cu-SAR-Bombesin (⁶⁴Cu-SAR-BBN, imaging) and ⁶⁷Cu-SAR-Bombesin (⁶⁷Cu-SAR-BBN, therapy), targets the GRPr (Figure 1). This may offer a potential imaging and treatment option for patients with low or no PSMA expression.

Translational data have shown inhibition of tumor growth and improved survival induced by ⁶⁷Cu-SAR-BBN in a PC3-xenograft mouse model¹⁰. These data led to the development of the COMBAT study, which aims to assess safety and anti-tumour efficacy of ⁶⁷Cu-SAR-BBN in mCRPC patients with GRPr-expressing disease.

Figure 1. ⁶⁴Cu-SAR-BBN stylized structure

Study Design

COMBAT is a multi-center, open-label, phase I/IIa dose-escalation and cohort expansion study of ⁶⁴Cu-SAR-BBN and ⁶⁷Cu-SAR-BBN administered to patients with mCRPC. Eligible patients will have progressive mCRPC, will be ineligible for ¹⁷⁷Lu-PSMA-617 therapy, and show a positive ⁶⁴Cu-SAR-BBN PET (Figure 2). The primary and key secondary objectives include assessment of safety of ⁶⁴Cu- and ⁶⁷Cu-SAR-BBN, determining the maximum tolerated dose (MTD) or maximum feasible dose (MFD) and antitumor efficacy of ⁶⁷Cu-SAR-BBN.

This study is being conducted in 2 phases: a Dose Escalation Phase (n=up to 24) and a Cohort Expansion Phase (n=14) (Figure 3). The ⁶⁷Cu-SAR-BBN dose levels investigated in the escalation phase include: 6 GBq (cohort 1, single dose with dosimetry assessment), 10 GBq (cohort 2, single dose), 14 GBq (cohort 3, single dose), and up to 28 GBq across two doses (cohort 4, two doses at MTD/MFD). Additional doses may be administered during both phases of the study.

- 2. ⁶⁴Cu-SAR-BBN administration followed by PET/CT scan
- 4. ⁶⁷Cu-SAR-BBN administration

PET image illustrative only using ⁶⁴Cu-SAR-BBN, not from the COMBAT study.

Figure 3. Study Phases

Cohort 1 currently open for recruitment (red box). *If radiological non-progression, additional cycles of ⁶⁷Cu-SAR-bisPSMA may be offered (up to 4 cycles in each cohort). Dose escalation and expansion pending safety review. TBD: to be determined, dose based on safety review of previous cohorts.

METHODS

Key Eligibility Criteria

- 1. Life expectancy >6 months
- 2. Histological, pathological, and/or cytological confirmation of PC
- 3. Positive ⁶⁴Cu-SAR-BBN PET/CT scan
- 4. Castrate level of serum/plasma testosterone (<50 ng/dL or <1.7 nmol/L)
- 5. \geq 1 metastatic lesion that is present at screening CT, MRI, or bone scan imaging
- 6. Participants must have adequate organ function and Eastern Cooperative Oncology Group (ECOG) 0-2
- 7. Have progressive mCRPC despite prior and rogen deprivation therapy and at least one and rogen receptor pathway inhibitor. Progression based on least 1 of the following: serum/plasma PSA progression, soft-tissue progression and/or progression of bone disease
- 8. Participants must be ineligible for PSMA-based therapy as per investigator discretion (i.e. poor response expected OR participant has progressed after or stopped responding to PSMA-based radionuclide therapy)
- 9. Previous treatment with a systemic radionuclide is allowed after pre-specified washout period

Primary Objectives

Dose Escalation Phase

- To determine the MTD or MFD of a single dose of ⁶⁷Cu-SAR-BBN
- To determine the recommended dose of 2 doses of ⁶⁷Cu-SAR-BBN
- **Cohort Expansion Phase**
- To investigate the anti-tumor efficacy of ⁶⁷Cu-SAR-BBN in terms of PSA and radiographic response

Dose Escalation and Cohort Expansion Phase

- To determine the safety and tolerability of ⁶⁷Cu-SAR-BBN
- To determine the safety and tolerability of ⁶⁴Cu-SAR-BBN

Current Status

At the time of the meeting, study enrollment for cohort 1 is currently underway with 6 sites participating in the United States.

References

- 1. Bakht et al. Landscape of prostate-specific membrane antigen heterogeneity and regulation in AR-positive and AR-negative metastatic prostate cancer. Nat Cancer. 2023. 2. Vlachostergios PJ, Niaz MJ, Sun M, et al. Prostate-Specific Membrane Antigen Uptake and Survival in Metastatic Castration-Resistant Prostate Cancer. Frontiers in oncology. 2021.
- 3. Baratto and lagaru et al. PSMA- and GRPR-Targeted PET: Results from 50 Patients with Biochemically Recurrent Prostate Cancer. J Nucl Med. 2021.
- 4. Afshar-Oromieh A, Holland-Letz T, Giesel FL, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging.
- 2008;60(1):1-42.
- 6. Baratto et al. Imaging the Distribution of Gastrin Releasing Peptide Receptors in Cancer. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2020. 7. Fleischmann et al. High expression of gastrin-releasing peptide receptors in the vascular bed of urinary tract cancers: promising candidates for vascular targeting applications. Endocrine-related cancer. 2009. 8. Markwalder et al. Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer research. 1999.

1. Patients with progressive mCRPC, ineligible for PSMA-based therapy

3. "Same day" imaging to select patients with a positive PET scan for therapy with ⁶⁷Cu-SAR-BBN

5. Safety and efficacy follow-up. Additional doses of ⁶⁷Cu-SAR-BBN may be considered depending on safety/efficacy assessments

C D M B A T

Secondary Objectives

Dose Escalation and Cohort Expansion Phase

- To investigate tumor response following treatment with ⁶⁷Cu-SAR-BBN based on RECIST V1.1 and PCWG3
- To investigate radiological progression-free survival following treatment with ⁶⁷Cu-SAR-BBN based on PCWG3
- To investigate change in biochemical markers following treatment with ⁶⁷Cu-SAR-BBN

ClinicalTrials.gov Identifier: NCT05633160. This study is sponsored by Clarity Pharmaceuticals Ltd.

5. Jensen et al. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev.

9. Morgat et al. Expression of Gastrin-Releasing Peptide Receptor in Breast Cancer and Its Association with Pathologic, Biologic, and Clinical Parameters: A Study of 1,432 Primary Tumors. JNM. 2017. 10. Huynh et al. Copper-67-Labeled Bombesin peptide for targeted radionuclide therapy of prostate cancer. Pharmaceuticals. 2022.