PUBLICATIONS
SarAr related papers
(1) Di Bartolo N, Sargeson AM, Smith SV. 2006. New 64Cu PET imaging agents for personalised medicine and drug development using the hexa-aza cage. Org Biomol Chem. Sep 7;4 (17):3350-7. http://www.ncbi.nlm.nih.gov/pubmed/17036125
(2) Stephan D. Voss, Suzanne V. Smith, Nadine DiBartolo, Lacey J. McIntosh, Erika M. Cyr, Ali A. Bonab, Jason L. J. Dearling, Edward A. Carter, Alan J. Fischman, S. Ted Treves, Stephen D. Gillies, Alan M. Sargeson, James S. Huston, and Alan B. Packard, 2007. Positron emission tomography (PET) imaging of neuroblastoma and melanoma with 64Cu-SarAr immunoconjugates. Proc Natl Acad Sci U S A. 30;104(44):17489-93. http://www.ncbi.nlm.nih.gov/pubmed/17954911
(3) Nadine Di Bartolo, Suzanne V. Smith, Eric Hetherington, Alan Sargeson, 2009. An Investigation into the Potential of SarAr for Use in 64Cu Radioimmunotherapy. Australian Journal of Chemistry 62(10) 1261–1270. http://www.publish.csiro.au/paper/CH09369.htm
(4) Lears KA, Ferdani R, Liang K, Zheleznyak A, Andrews R, Sherman CD, Achilefu S, Anderson CJ, Rogers BE. 2011. In Vitro and In Vivo Evaluation of 64Cu-Labeled SarAr-Bombesin Analogs in Gastrin-Releasing Peptide Receptor–Expressing Prostate Cancer. J Nucl Med; 52(3):470-7. http://www.ncbi.nlm.nih.gov/pubmed/21321264
(5) Smith S.V. 2008. Sarar technology for the application of Copper-64 in biology and materials science. Q J Nucl Med Mol Imaging, 52(2): 193-202. http://www.ncbi.nlm.nih.gov/pubmed/18174877
(6) Dearling JL, Voss SD, Dunning P, Snay E, Fahey F, Smith SV, Huston JS, Meares CF, Treves ST, Packard AB. 2010. Imaging cancer using PET–the effect of the bifunctional chelator on the biodistribution of a (64)Cu-labeled antibody. Nucl Med Biol. 38(1): 29-38. http://www.ncbi.nlm.nih.gov/pubmed/21220127
(7) Liu S, Li D, Huang CW, Yap LP, Park R, Shan H, Li Z, Conti PS, 2012. Efficient Construction of PET/Fluorescence Probe Based on Sarcophagine Cage: An Opportunity to Integrate Diagnosis with Treatment. Mol Imaging Biol. http://www.ncbi.nlm.nih.gov/pubmed/22476968
COSar related papers
(1) Cooper MS, Ma MT, Sunassee K, Shaw KP, Williams JD, Paul RL, Donnelly PS, Blower PJ., 2012. Comparison of 64Cu-Complexing Bifunctional Chelators for Radioimmunoconjugation: Labeling Efficiency, Specific Activity, and in Vitro/in Vivo Stability. Bioconjugate Chem., 23 (5), pp 1029–1039. http://www.ncbi.nlm.nih.gov/pubmed/22471317
(2) Ma MT, Cooper MS, Paul RL, Shaw KP, Karas JA, Scanlon D, White JM, Blower PJ, Donnelly PS, 2011. Macrobicyclic cage amine ligands for copper radiopharmaceuticals: a single bivalent cage amine containing two Lys3-bombesin targeting peptides. Inorg Chem, 50(14):6701-10. http://www.ncbi.nlm.nih.gov/pubmed/21667932
AmBaSar related papers
(1) Cai H, Fissekis J, Conti PS, 2009. Synthesis of a novel bifunctional chelator AmBaSar based on sarcophagine for peptide conjugation and 64Cu radiolabelling. Dalton Trans, 5395-5400. http://www.ncbi.nlm.nih.gov/pubmed/19565091
(2) Cai H, Li Z, Huang CW, Park R, Shahinian AH, Conti PS., 2010. An improved synthesis and biological evaluation of a new cage-like bifunctional chelator, 4-((8-amino-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1-ylamino)methyl)benzoic acid, for 64Cu radiopharmaceuticals. Nucl Med Biol, 37(1):57-65. http://www.ncbi.nlm.nih.gov/pubmed/20122669
(3) Hancheng Cai, John Fissekis, Ryan Park, Chiun-wei Huang and Peter Conti, 2009. Preparation of a novel bifunctional chelator AmBaSar based on sarcophagine for Cu-64 radiopharmaceuticals.The Journal of Nuclear Medicine, 50 (Supplement 2): 1943.
DiAmSar related papers
(1) Huang CW, Li Z, Cai H, Shahinian T, Conti PS, 2011. Biological stability evaluation of the α2β1 receptor imaging agents: diamsar and DOTA conjugated DGEA peptide.Bioconjug Chem., 16;22(2):256-63. http://www.ncbi.nlm.nih.gov/pubmed/21244039
(2) Michelle T. Ma, John A. Karas, Jonathan M. White, Denis Scanlon and Paul S. Donnelly., 2009. A new bifunctional chelator for copper radiopharmaceuticals: a cage amine ligand with a carboxylate functional group for conjugation to peptides. Chem Commun (Camb). 14;(22):3237-9. http://www.ncbi.nlm.nih.gov/pubmed/19587925
(3) Ma MT, Neels OC, Denoyer D, Roselt P, Karas JA, Scanlon DB, White JM, Hicks RJ, Donnelly PS., 2011. Gallium-68 complex of a macrobicyclic cage amine chelator tethered to two integrin-targeting peptides for diagnostic tumor imaging. Bioconjug Chem, 22(10): 2093-103. http://www.ncbi.nlm.nih.gov/pubmed/21877750
(4) Ferdani R, Stigers DJ, Fiamengo AL, Wei L, Li BT, Golen JA, Rheingold AL, Weisman GR, Wong EH, Anderson CJ., 2012. Synthesis, Cu(II) complexation, 64 Cu-labeling and biological evaluation of cross-bridged cyclam chelators with phosphonate pendant arms. Dalton Trans, 41, 1938. http://www.ncbi.nlm.nih.gov/pubmed/22170043
(5) Rockey WM, Huang L, Kloepping KC, Baumhover NJ, Giangrande PH, Schultz MK., 2011. Synthesis and radiolabeling of chelator–RNA aptamer bioconjugates with copper-64 for targeted molecular imaging. Bioorganic & Medicinal Chemistry, 19, 4080 – 4090. http://www.ncbi.nlm.nih.gov/pubmed/21658962
(6) Wei L, Ye Y, Wadas TJ, Lewis JS, Welch MJ, Achilefu S, Anderson CJ., 2009. (64)Cu-labeled CB-TE2A and diamsar-conjugated RGD peptide analogs for targeting angiogenesis: comparison of their biological activity. Nucl Med Biol, 36(3): 277-85. http://www.ncbi.nlm.nih.gov/pubmed/19324273